Recently published - More

Abstract

Serine-rich splicing factor 3 (SRSF3) plays a critical role in liver function and its loss promotes chronic liver damage and regeneration. As a consequence, genetic deletion of SRSF3 in hepatocytes caused progressive liver disease and ultimately led to hepatocellular carcinoma. Here we show that SRSF3 is decreased in human liver samples with nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), or cirrhosis that was associated with alterations in RNA splicing of known SRSF3 target genes. Hepatic SRSF3 expression was similarly decreased and RNA splicing dysregulated in mouse models of NAFLD and NASH. We showed that palmitic acid–induced oxidative stress caused conjugation of the ubiquitin-like NEDD8 protein to SRSF3 and proteasome-mediated degradation. SRSF3 was selectively neddylated at lysine 11 and mutation of this residue (SRSF3-K11R) was sufficient to prevent both SRSF3 degradation and alterations in RNA splicing. Lastly, prevention of SRSF3 degradation in vivo partially protected mice from hepatic steatosis, fibrosis, and inflammation. These results highlight a neddylation-dependent mechanism regulating gene expression in the liver that is disrupted in early metabolic liver disease and may contribute to the progression to NASH, cirrhosis, and ultimately hepatocellular carcinoma.

Authors

Deepak Kumar, Manasi Das, Consuelo Sauceda, Lesley G. Ellies, Karina Kuo, Purva Parwal, Mehak Kaur, Lily Jih, Gautam K. Bandyopadhyay, Douglas Burton, Rohit Loomba, Olivia Osborn, Nicholas J.G. Webster

×

Abstract

BACKGROUND Idiopathic multicentric Castleman disease (iMCD) is a hematologic illness involving cytokine-induced lymphoproliferation, systemic inflammation, cytopenias, and life-threatening multi-organ dysfunction. The molecular underpinnings of interleukin-6 (IL-6) blockade–refractory patients remain unknown; no targeted therapies exist. In this study, we searched for therapeutic targets in IL-6 blockade–refractory iMCD patients with the thrombocytopenia, anasarca, fever/elevated C-reactive protein, reticulin myelofibrosis, renal dysfunction, organomegaly (TAFRO) clinical subtype.METHODS We analyzed tissues and blood samples from 3 IL-6 blockade–refractory iMCD-TAFRO patients. Cytokine panels, quantitative serum proteomics, flow cytometry of PBMCs, and pathway analyses were employed to identify novel therapeutic targets. To confirm elevated mTOR signaling, a candidate therapeutic target from the above assays, immunohistochemistry was performed for phosphorylated S6, a read-out of mTOR activation, in 3 iMCD lymph node tissue samples and controls. Proteomic, immunophenotypic, and clinical response assessments were performed to quantify the effects of administration of the mTOR inhibitor sirolimus.RESULTS Studies of 3 IL-6 blockade–refractory iMCD cases revealed increased CD8+ T cell activation, VEGF-A, and PI3K/Akt/mTOR pathway activity. Administration of sirolimus substantially attenuated CD8+ T cell activation and decreased VEGF-A levels. Sirolimus induced clinical benefit responses in all 3 patients with durable and ongoing remissions of 66, 19, and 19 months.CONCLUSION This precision medicine approach identifies PI3K/Akt/mTOR signaling as the first pharmacologically targetable pathogenic process in IL-6 blockade–refractory iMCD. Prospective evaluation of sirolimus in treatment-refractory iMCD is planned (NCT03933904).FUNDING This study was supported by the Castleman’s Awareness & Research Effort/Castleman Disease Collaborative Network, Penn Center for Precision Medicine, University Research Foundation, Intramural NIH funding, and the National Heart Lung and Blood Institute.

Authors

David C. Fajgenbaum, Ruth-Anne Langan, Alberto Sada Japp, Helen L. Partridge, Sheila K. Pierson, Amrit Singh, Daniel J. Arenas, Jason R. Ruth, Christopher S. Nabel, Katie Stone, Mariko Okumura, Anthony Schwarer, Fábio Freire Jose, Nelson Hamerschlak, Gerald B. Wertheim, Michael B. Jordan, Adam D. Cohen, Vera Krymskaya, Arthur Rubenstein, Michael R. Betts, Taku Kambayashi, Frits van Rhee, Thomas S. Uldrick

×

Abstract

The rate of disease progression in autosomal-dominant polycystic kidney disease (ADPKD) has high intrafamilial variability, suggesting that environmental factors may play a role. We hypothesized that a prevalent form of renal insult may accelerate cystic progression and investigated tubular crystal deposition. We report that calcium oxalate (CaOx) crystal deposition led to rapid tubule dilation, activation of PKD-associated signaling pathways, and hypertrophy in tubule segments along the affected nephrons. Blocking mTOR signaling blunted this response and inhibited efficient excretion of lodged crystals. This mechanism of “flushing out” crystals by purposefully dilating renal tubules has not to our knowledge been previously recognized. Challenging PKD rat models with CaOx crystal deposition or inducing calcium phosphate deposition by increasing dietary phosphorus intake led to increased cystogenesis and disease progression. In a cohort of patients with ADPKD, lower levels of urinary excretion of citrate, an endogenous inhibitor of calcium crystal formation, were correlated with increased disease severity. These results suggest that PKD progression may be accelerated by commonly occurring renal crystal deposition that could be therapeutically controlled by relatively simple measures.

Authors

Jacob A. Torres, Mina Rezaei, Caroline Broderick, Louis Lin, Xiaofang Wang, Bernd Hoppe, Benjamin D. Cowley Jr., Vincenzo Savica, Vicente E. Torres, Saeed Khan, Ross P. Holmes, Michal Mrug, Thomas Weimbs

×

Abstract

Streptococcus pneumoniae (Spn) is a common cause of respiratory infection, but also frequently colonizes the nasopharynx in the absence of disease. We used mass cytometry to study immune cells from nasal biopsy samples collected following experimental human pneumococcal challenge in order to identify immunological mechanisms of control of Spn colonization. Using 37 markers, we characterized 293 nasal immune cell clusters, of which 7 were associated with Spn colonization. B cell and CD161+CD8+ T cell clusters were significantly lower in colonized than in noncolonized subjects. By following a second cohort before and after pneumococcal challenge we observed that B cells were depleted from the nasal mucosa upon Spn colonization. This associated with an expansion of Spn polysaccharide–specific and total plasmablasts in blood. Moreover, increased responses of blood mucosa-associated invariant T (MAIT) cells against in vitro stimulation with pneumococcus prior to challenge associated with protection against establishment of Spn colonization and with increased mucosal MAIT cell populations. These results implicate MAIT cells in the protection against pneumococcal colonization and demonstrate that colonization affects mucosal and circulating B cell populations.

Authors

Simon P. Jochems, Karin de Ruiter, Carla Solórzano, Astrid Voskamp, Elena Mitsi, Elissavet Nikolaou, Beatriz F. Carniel, Sherin Pojar, Esther L. German, Jesús Reiné, Alessandra Soares-Schanoski, Helen Hill, Rachel Robinson, Angela D. Hyder-Wright, Caroline M. Weight, Pascal F. Durrenberger, Robert S. Heyderman, Stephen B. Gordon, Hermelijn H. Smits, Britta C. Urban, Jamie Rylance, Andrea M. Collins, Mark D. Wilkie, Lepa Lazarova, Samuel C. Leong, Maria Yazdanbakhsh, Daniela M. Ferreira

×

Abstract

Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease with diverse drivers of disease progression and mechanisms of therapeutic resistance. We conducted deep phenotypic characterization of CRPC metastases and patient-derived xenograft (PDX) lines using whole-genome RNA sequencing, gene set enrichment analysis, and immunohistochemistry. Our analyses revealed 5 mCRPC phenotypes based on the expression of well-characterized androgen receptor (AR) or neuroendocrine (NE) genes: AR-high tumors (ARPC), AR-low tumors (ARLPC), amphicrine tumors composed of cells coexpressing AR and NE genes (AMPC), double-negative tumors (i.e., AR–/NE–; DNPC), and tumors with small cell or NE gene expression without AR activity (SCNPC). RE1 silencing transcription factor (REST) activity, which suppresses NE gene expression, was lost in AMPC and SCNPC PDX models. However, knockdown of REST in cell lines revealed that attenuated REST activity drives the AMPC phenotype but is not sufficient for SCNPC conversion. We also identified a subtype of DNPC tumors with squamous differentiation and generated an encompassing 26-gene transcriptional signature that distinguished the 5 mCRPC phenotypes. Together, our data highlight the central role of AR and REST in classifying treatment-resistant mCRPC phenotypes. These molecular classifications could potentially guide future therapeutic studies and clinical trial design.

Authors

Mark P. Labrecque, Ilsa M. Coleman, Lisha G. Brown, Lawrence D. True, Lori Kollath, Bryce Lakely, Holly M. Nguyen, Yu C. Yang, Rui M. Gil da Costa, Arja Kaipainen, Roger Coleman, Celestia S. Higano, Evan Y. Yu, Heather H. Cheng, Elahe A. Mostaghel, Bruce Montgomery, Michael T. Schweizer, Andrew C. Hsieh, Daniel W. Lin, Eva Corey, Peter S. Nelson, Colm Morrissey

×

Abstract

Although obesity is typically associated with metabolic dysfunction and cardiometabolic diseases, some people with obesity are protected from many of the adverse metabolic effects of excess body fat and are considered “metabolically healthy.” However, there is no universally accepted definition of metabolically healthy obesity (MHO). Most studies define MHO as having either 0, 1, or 2 metabolic syndrome components, whereas many others define MHO using the homeostasis model assessment of insulin resistance (HOMA-IR). Therefore, numerous people reported as having MHO are not metabolically healthy, but simply have fewer metabolic abnormalities than those with metabolically unhealthy obesity (MUO). Nonetheless, a small subset of people with obesity have a normal HOMA-IR and no metabolic syndrome components. The mechanism(s) responsible for the divergent effects of obesity on metabolic health is not clear, but studies conducted in rodent models suggest that differences in adipose tissue biology in response to weight gain can cause or prevent systemic metabolic dysfunction. In this article, we review the definition, stability over time, and clinical outcomes of MHO, and discuss the potential factors that could explain differences in metabolic health in people with MHO and MUO — specifically, modifiable lifestyle factors and adipose tissue biology. Better understanding of the factors that distinguish people with MHO and MUO can produce new insights into mechanism(s) responsible for obesity-related metabolic dysfunction and disease.

Authors

Gordon I. Smith, Bettina Mittendorfer, Samuel Klein

×

Abstract

Parkinson’s disease (PD) is a common neurodegenerative disease that lacks therapies to prevent progressive neurodegeneration. Impaired energy metabolism and reduced ATP levels are common features of PD. Previous studies revealed that terazosin (TZ) enhances the activity of phosphoglycerate kinase 1 (PGK1), thereby stimulating glycolysis and increasing cellular ATP levels. Therefore, we asked whether enhancement of PGK1 activity would change the course of PD. In toxin-induced and genetic PD models in mice, rats, flies, and induced pluripotent stem cells, TZ increased brain ATP levels and slowed or prevented neuron loss. The drug increased dopamine levels and partially restored motor function. Because TZ is prescribed clinically, we also interrogated 2 distinct human databases. We found slower disease progression, decreased PD-related complications, and a reduced frequency of PD diagnoses in individuals taking TZ and related drugs. These findings suggest that enhancing PGK1 activity and increasing glycolysis may slow neurodegeneration in PD.

Authors

Rong Cai, Yu Zhang, Jacob E. Simmering, Jordan L. Schultz, Yuhong Li, Irene Fernandez-Carasa, Antonella Consiglio, Angel Raya, Philip M. Polgreen, Nandakumar S. Narayanan, Yanpeng Yuan, Zhiguo Chen, Wenting Su, Yanping Han, Chunyue Zhao, Lifang Gao, Xunming Ji, Michael J. Welsh, Lei Liu

×

Abstract

Cystic fibrosis (CF) lung disease is characterized by early and persistent mucus accumulation and neutrophilic inflammation in the distal airways. Identification of the factors in CF mucopurulent secretions that perpetuate CF mucoinflammation may provide strategies for novel CF pharmacotherapies. We show that IL-1β, with IL-1α, dominated the mucin prosecretory activities of supernatants of airway mucopurulent secretions (SAMS). Like SAMS, IL-1β alone induced MUC5B and MUC5AC protein secretion and mucus hyperconcentration in CF human bronchial epithelial (HBE) cells. Mechanistically, IL-1β induced the sterile α motif–pointed domain containing ETS transcription factor (SPDEF) and downstream endoplasmic reticulum to nucleus signaling 2 (ERN2) to upregulate mucin gene expression. Increased mRNA levels of IL1B, SPDEF, and ERN2 were associated with increased MUC5B and MUC5AC expression in the distal airways of excised CF lungs. Administration of an IL-1 receptor antagonist (IL-1Ra) blocked SAMS-induced expression of mucins and proinflammatory mediators in CF HBE cells. In conclusion, IL-1α and IL-1β are upstream components of a signaling pathway, including IL-1R1 and downstream SPDEF and ERN2, that generate a positive feedback cycle capable of producing persistent mucus hyperconcentration and IL-1α and/or IL-1β–mediated neutrophilic inflammation in the absence of infection in CF airways. Targeting this pathway therapeutically may ameliorate mucus obstruction and inflammation-induced structural damage in young CF children.

Authors

Gang Chen, Ling Sun, Takafumi Kato, Kenichi Okuda, Mary B. Martino, Aiman Abzhanova, Jennifer M. Lin, Rodney C. Gilmore, Bethany D. Batson, Yvonne K. O’Neal, Allison S. Volmer, Hong Dang, Yangmei Deng, Scott H. Randell, Brian Button, Alessandra Livraghi-Butrico, Mehmet Kesimer, Carla M.P. Ribeiro, Wanda K. O’Neal, Richard C. Boucher

×

Abstract

Mucus obstruction is a hallmark of cystic fibrosis (CF) airway disease, leading to chronic infection, dysregulated inflammation, and progressive lung disease. As mucus hyperexpression is a key component in the initiation and perpetuation of airway obstruction, the triggers underlying mucin release must be identified and understood. In this issue of the JCI, Chen et al. sought to delineate the mechanisms that allow IL-1α/IL-1β to perpetuate the mucoinflammatory environment characteristic of the CF airway. The authors demonstrated that IL-1α and IL-1β stimulated non-CF human bronchial epithelial (HBE) cells to upregulate and secrete both MUC5B and MUC5AC in a dose-dependent manner, an effect that was neutralized by the inhibition of the IL-1α/IL-1β receptor (IL-1R1). Further experiments using mouse models and excised lung tissue identified contributors that drive a vicious feedback cycle of hyperconcentrated mucus secretions and persistent inflammation in the CF airway, factors that are likely at the nidus of progressive lung disease.

Authors

Susan E. Birket, Steven M. Rowe

×

Abstract

The prognostic value of immune cell infiltration within the tumor microenvironment (TME) has been extensively investigated via histological and genomic approaches. Based on the positive prognostic value of T cell infiltration, Immunoscore has been developed and validated for predicting risk of recurrence for colorectal cancer (CRC). Also, association between a consensus T helper 1 (Th-1) immune response and favorable clinical outcomes has been observed across multiple cancer types. Here, we reanalyzed public genomic data sets from The Cancer Genome Atlas (TCGA) and NCBI Gene Expression Omnibus (NCBI-GEO) and performed multispectral immunohistochemistry (IHC) on a cohort of colorectal tumors. We identified and characterized a risk group, representing approximately 10% of CRC patients, with high intratumoral CD8+ T cell infiltration, but poor prognosis. These tumors included both microsatellite instable (MSI) and stable (MSS) phenotypes and had a high density of tumor-associated macrophages (TAMs) that expressed CD274 (programmed death-ligand 1 [PD-L1]), TGF-β activation, and an immune overdrive signature characterized by the overexpression of immune response and checkpoint genes. Our findings illustrate that CRC patients may have poor prognosis despite high CD8+ T cell infiltration and provide CD274 as a simple biomarker for identifying these patients.

Authors

Marwan Fakih, Ching Ouyang, Chongkai Wang, Travis Yiwey Tu, Maricel C. Gozo, May Cho, Marvin Sy, Jeffrey A. Longmate, Peter P. Lee

×

Abstract

Idiopathic multicentric Castleman disease (iMCD) is a rare hematologic illness of systemic inflammation and organ dysfunction, with unknown etiology. Although therapies targeting IL-6 have been proven effective, a subset of patients with iMCD are resistant to this approach. In this issue of the JCI, Fajgenbaum et al. performed an in-depth analysis of serum inflammatory markers in three iMCD patients refractory to IL-6 blockade, and identified activation of the mTOR pathway associated with symptom flares. Treatment with sirolimus, an mTOR inhibitor, induced remission in all three patients. This study models a precision medicine approach to discovering therapies for rare diseases.

Authors

Robert M. Stern, Nancy Berliner

×

Abstract

Authors

Linda M. S. Resar, Elizabeth M. Jaffee, Mary Armanios, Sarah Jackson, Nilofer S. Azad, Maureen R. Horton, Mariana J. Kaplan, Marikki Laiho, Marcela V. Maus, Charlotte J. Sumner, Sarah J. Wheelan, Marsha Wills-Karp

×



Abstract

3-M primordial dwarfism is an inherited disease characterized by severe pre- and postnatal growth retardation and by mutually exclusive mutations in 3 genes, CUL7, OBSL1, and CCDC8. The mechanism underlying 3-M dwarfism is not clear. We showed here that CCDC8, derived from a retrotransposon Gag protein in placental mammals, exclusively localized on the plasma membrane and was phosphorylated by CK2 and GSK3. Phosphorylation of CCDC8 resulted in its binding first with OBSL1, and then CUL7, leading to the membrane assembly of the 3-M E3 ubiquitin ligase complex. We identified LL5β, a plasma membrane protein that regulates cell migration, as a substrate of 3-M ligase. Wnt inhibition of CCDC8 phosphorylation or patient-derived mutations in 3-M genes disrupted membrane localization of the 3-M complex and accumulated LL5β. Deletion of Ccdc8 in mice impaired trophoblast migration and placental development, resulting in intrauterine growth restriction and perinatal lethality. These results identified a mechanism regulating cell migration and placental development that underlies the development of 3-M dwarfism.

Authors

Pu Wang, Feng Yan, Zhijun Li, Yanbao Yu, Scott E. Parnell, Yue Xiong

×

Abstract

Genetic susceptibility to type 2 diabetes is primarily due to β cell dysfunction. However, a genetic study to directly interrogate β cell function ex vivo has never been previously performed. We isolated 233,447 islets from 483 Diversity Outbred (DO) mice maintained on a Western-style diet, and measured insulin secretion in response to a variety of secretagogues. Insulin secretion from DO islets ranged greater than 1000-fold even though none of the mice were diabetic. The insulin secretory response to each secretagogue had a unique genetic architecture; some of the loci were specific for one condition, whereas others overlapped. Human loci that are syntenic to many of the insulin secretion quantitative trait loci (QTL) from mice are associated with diabetes-related SNPs in human genome-wide association studies. We report on 3 genes, Ptpn18, Hunk, and Zfp148, where the phenotype predictions from the genetic screen were fulfilled in our studies of transgenic mouse models. These 3 genes encode a nonreceptor type protein tyrosine phosphatase, a serine/threonine protein kinase, and a Krϋppel-type zinc-finger transcription factor, respectively. Our results demonstrate that genetic variation in insulin secretion that can lead to type 2 diabetes is discoverable in nondiabetic individuals.

Authors

Mark P. Keller, Mary E. Rabaglia, Kathryn L. Schueler, Donnie S. Stapleton, Daniel M. Gatti, Matthew Vincent, Kelly A. Mitok, Ziyue Wang, Takanao Ishimura, Shane P. Simonett, Christopher H. Emfinger, Rahul Das, Tim Beck, Christina Kendziorski, Karl W. Broman, Brian S. Yandell, Gary A. Churchill, Alan D. Attie

×

Abstract

Lysophosphatidic acid (LPA) is a potent lipid mediator with various biological functions mediated through six G protein–coupled receptors (GPCRs), LPA1–LPA6. Previous studies have demonstrated that LPA–Gα12/Gα13 signaling plays an important role in embryonic vascular development. However, the responsible LPA receptors and underlying mechanisms are poorly understood. Here, we show a critical role of LPA4 and LPA6 in developmental angiogenesis. In mice, Lpa4;Lpa6 double-knockout (DKO) embryos were lethal due to global vascular deficiencies, and endothelial cell–specific (EC-specific) Lpa4;Lpa6-DKO retinas had impaired sprouting angiogenesis. Mechanistically, LPA activated the transcriptional regulators YAP and TAZ through LPA4/LPA6–mediated Gα12/Gα13–Rho–ROCK signaling in ECs. YAP/TAZ knockdown increased endothelial expression of the Notch ligand delta-like ligand 4 (DLL4) that was mediated by β-catenin and Notch intracellular domain (NICD). Fibrin gel sprouting assay revealed that LPA4/LPA6, Gα12/Gα13, or YAP/TAZ knockdown consistently blocked EC sprouting, which was rescued by a Notch inhibitor. Notably, the inhibition of Notch signaling also ameliorated impaired retinal angiogenesis in EC-specific Lpa4;Lpa6-DKO mice. Overall, these results suggest that the Gα12/Gα13–coupled receptors LPA4 and LPA6 synergistically regulate endothelial Dll4 expression through YAP/TAZ activation. This could in part account for the mechanism of YAP/TAZ–mediated developmental angiogenesis. Our findings provide insight into the biology of GPCR-activated YAP/TAZ.

Authors

Daisuke Yasuda, Daiki Kobayashi, Noriyuki Akahoshi, Takayo Ohto-Nakanishi, Kazuaki Yoshioka, Yoh Takuwa, Seiya Mizuno, Satoru Takahashi, Satoshi Ishii

×

Abstract

The stimulator of IFN genes (STING) signaling pathway is a critical link between innate and adaptive immunity and induces antitumor immune responses. STING is expressed in vasculatures, but its role in tumor angiogenesis has not been elucidated. Here, we investigated STING-induced tumor vascular remodeling and the potential of STING-based combination immunotherapy. Endothelial STING expression was correlated with enhanced T cell infiltration and prolonged survival in human colon and breast cancer. Intratumoral STING activation with STING agonists (cGAMP or RR-CDA) normalized tumor vasculatures in implanted and spontaneous cancers, but not in STING-deficient mice. These were mediated by upregulation of type I/II IFN genes and vascular stabilizing genes (e.g., Angpt1, Pdgfrb, and Col4a). STING in nonhematopoietic cells is as important as STING in hematopoietic cells for inducing a maximal therapeutic efficacy of exogenous STING agonists. Vascular normalizing effects of STING agonists were dependent on type I IFN signaling and CD8+ T cells. Notably, STING-based immunotherapy was maximally effective when combined with VEGFR2 blockade and/or immune-checkpoint blockade (αPD-1 or αCTLA-4), leading to complete regression of immunotherapy-resistant tumors. Our data show that intratumoral STING activation can normalize tumor vasculature and the tumor microenvironment, providing a rationale for combining STING-based immunotherapy and antiangiogenic therapy.

Authors

Hannah Yang, Won Suk Lee, So Jung Kong, Chang Gon Kim, Joo Hoon Kim, Sei Kyung Chang, Sewha Kim, Gwangil Kim, Hong Jae Chon, Chan Kim

×

Abstract

Inflammatory destruction of iron-rich myelin is characteristic of multiple sclerosis (MS). Although iron is needed for oligodendrocytes to produce myelin during development, its deposition has also been linked to neurodegeneration and inflammation, including in MS. We report perivascular iron deposition in multiple sclerosis lesions that was mirrored in 72 lesions from 13 marmosets with experimental autoimmune encephalomyelitis. Iron accumulated mainly inside microglia/macrophages from 6 weeks after demyelination. Consistently, expression of transferrin receptor, the brain’s main iron-influx protein, increased as lesions aged. Iron was uncorrelated with inflammation and postdated initial demyelination, suggesting that iron is not directly pathogenic. Iron homeostasis was at least partially restored in remyelinated, but not persistently demyelinated, lesions. Taken together, our results suggest that iron accumulation in the weeks after inflammatory demyelination may contribute to lesion repair rather than inflammatory demyelination per se.

Authors

Nathanael J. Lee, Seung-Kwon Ha, Pascal Sati, Martina Absinta, Govind Nair, Nicholas J. Luciano, Emily C. Leibovitch, Cecil C. Yen, Tracey A. Rouault, Afonso C. Silva, Steven Jacobson, Daniel S. Reich

×

Abstract

Reactive astrocytes are associated with every form of neurological injury. Despite their ubiquity, the molecular mechanisms controlling their production and diverse functions remain poorly defined. Because many features of astrocyte development are recapitulated in reactive astrocytes, we investigated the role of nuclear factor I-A (NFIA), a key transcriptional regulator of astrocyte development whose contributions to reactive astrocytes remain undefined. Here, we show that NFIA is highly expressed in reactive astrocytes in human neurological injury and identify unique roles across distinct injury states and regions of the CNS. In the spinal cord, after white matter injury (WMI), NFIA-deficient astrocytes exhibit defects in blood-brain barrier remodeling, which are correlated with the suppression of timely remyelination. In the cortex, after ischemic stroke, NFIA is required for the production of reactive astrocytes from the subventricular zone (SVZ). Mechanistically, NFIA directly regulates the expression of thrombospondin 4 (Thbs4) in the SVZ, revealing a key transcriptional node regulating reactive astrogenesis. Together, these studies uncover critical roles for NFIA in reactive astrocytes and illustrate how region- and injury-specific factors dictate the spectrum of reactive astrocyte responses.

Authors

Dylan Laug, Teng-Wei Huang, Navish A. Bosquez Huerta, Anna Yu-Szu Huang, Debosmita Sardar, Joshua Ortiz-Guzman, Jeffrey C. Carlson, Benjamin R. Arenkiel, Chay T. Kuo, Carrie A. Mohila, Stacey M. Glasgow, Hyun Kyoung Lee, Benjamin Deneen

×

In-Press Preview - More

Abstract

Manganese (Mn), an essential metal and nutrient, is toxic in excess. Toxicity classically results from inhalational exposures in individuals working in industrial settings. Identified in 2012, the first known disease of inherited Mn excess is caused by mutations in the metal exporter SLC30A10 and is characterized by Mn excess, dystonia, cirrhosis, and polycythemia. To investigate the role of SLC30A10 in Mn homeostasis, we first generated mice with whole body Slc30a10 deficiency, which developed severe Mn excess and impaired systemic and biliary Mn excretion. Slc30a10 localized to canalicular membrane of hepatocytes, but mice with liver Slc30a10 deficiency developed minimal Mn excess despite impaired biliary Mn excretion. Slc30a10 also localized to the apical membrane of enterocytes, but mice with Slc30a10 deficiency in small intestines developed minimal Mn excess despite impaired Mn export into the lumen of the small intestines. Finally, mice with Slc30a10 deficiency in liver and small intestines developed Mn excess less severe than that observed in mice with whole body Slc30a10 deficiency, suggesting that additional sites of Slc30a10 expression contribute to Mn homeostasis. Overall, these results indicated that Slc30a10 is essential for Mn excretion and could be an effective target for pharmacological intervention for Mn toxicity.

Authors

Courtney J. Mercadante, Milankumar Prajapati, Heather L. Conboy, Miriam E. Dash, Carolina Herrera, Michael A. Pettiglio, Layra Cintron-Rivera, Madeleine A. Salesky, Deepa B. Rao, Thomas B. Bartnikas

×

Abstract

The Microphthalmia family of transcription factors (MiT/TFE) controls lysosomal biogenesis and is negatively regulated by the nutrient sensor mTORC1. However, the mechanisms by which cells with constitutive mTORC1 signaling maintain lysosomal catabolism remain to be elucidated. Using the murine epidermis as a model system, we found that epidermal Tsc1 deletion resulted in a phenotype characterized by wavy hair and curly whiskers, and was associated with increased EGFR and HER2 degradation. Unexpectedly, constitutive mTORC1 activation with Tsc1 loss increased lysosomal content via up-regulated expression and activity of MiT/TFEs, while genetic deletion of Rheb or Rptor or prolonged pharmacologic mTORC1 inactivation had the reverse effect. This paradoxical increase in lysosomal biogenesis by mTORC1 was mediated by feedback inhibition of AKT, and a resulting suppression of AKT-induced MiT/TFE down-regulation. Thus, inhibiting hyperactive AKT signaling in the context of mTORC1 loss-of-function fully restored MiT/TFE expression and activity. These data suggest that signaling feedback loops work to restrain or maintain cellular lysosomal content during chronically inhibited or constitutively active mTORC1 signaling respectively, and reveal a mechanism by which mTORC1 regulates upstream receptor tyrosine kinase signaling.

Authors

Kaushal Asrani, Sanjana Murali, Brandon Lam, Chan-Hyun Na, Pornima Phatak, Akshay Sood, Harsimar Kaur, Zoya Khan, Michaël Noë, Ravi K. Anchoori, C. Conover Talbot Jr., Barbara Smith, Michael Skaro, Tamara L. Lotan

×

Abstract

Myocardin (MYOCD) is the founding member of a class of transcriptional co-activators that bind serum response factor to activate gene expression programs critical in smooth muscle (SM) and cardiac muscle development. Insights into the molecular functions of MYOCD have been obtained from cell culture studies and, to date, knowledge about in vivo roles of MYOCD comes exclusively from experimental animals. Here, we defined an often lethal congenital human disease associated with inheritance of pathogenic MYOCD variants. This disease manifested as a massively dilated urinary bladder, or megabladder, with disrupted SM in its wall. We provided evidence that monoallelic loss-of-function variants in MYOCD caused congenital megabladder in males only, whereas biallelic variants were associated with disease in both sexes, with a phenotype additionally involving the cardiovascular system. These results were supported by co-segregation of MYOCD variants with the phenotype in four unrelated families, by in vitro transactivation studies where pathogenic variants resulted in abrogated SM gene expression, and finding megabladder in two distinct mouse models with reduced Myocd activity. In conclusion, we have demonstrated that variants in MYOCD result in human disease, and the collective findings highlight a vital role for MYOCD in mammalian organogenesis.

Authors

Arjan C. Houweling, Glenda M. Beaman, Alex V. Postma, T. Blair Gainous, Klaske D. Lichtenbelt, Francesco Brancati, Filipa M. Lopes, Ingeborg van der Made, Abeltje M. Polstra, Michael L. Robinson, Kevin D. Wright, Jamie M. Ellingford, Ashley R. Jackson, Eline Overwater, Rita Genesio, Silvio Romano, Letizia Camerota, Emanuela D'Angelo, Elizabeth J. Meijers-Heijboer, Vincent M. Christoffels, Kirk M. McHugh, Brian L. Black, William G. Newman, Adrian S. Woolf, Esther E. Creemers

×

Abstract

Dermal adipose tissue (dWAT) has been the focus of much discussion in recent years. However, dWAT remains poorly characterized. The fate of the mature dermal adipocytes and the origin of the rapidly re-appearing dermal adipocytes at different stages remain unclear. Here, we isolated dermal adipocytes and characterized dermal fat at the cellular and molecular level. Together with its dynamic responses to external stimuli, we established that dermal adipocytes are a distinct class of white adipocytes with high plasticity. By combining pulse-chase lineage tracing and single cell RNA-sequencing, we observed that mature dermal adipocytes undergo de-differentiation and re-differentiation under physiological and pathophysiological conditions. Upon various challenges, the de-differentiated cells proliferate and re-differentiate into adipocytes. In addition, manipulation of dWAT highlighted an important role for mature dermal adipocytes for hair cycling and wound healing. Altogether, these observations unravel a surprising plasticity of dermal adipocytes and provide an explanation for the dynamic changes in dWAT mass that occur under physiological and pathophysiological conditions, and highlight the important contributions of dWAT towards maintaining skin homeostasis.

Authors

Zhuzhen Zhang, Mengle Shao, Chelsea Hepler, Zhenzhen Zi, Shangang Zhao, Yu A. An, Yi Zhu, Alexandra Ghaben, May-yun Wang, Na Li, Toshiharu Onodera, Nolwenn Joffin, Clair Crewe, Qingzhang Zhu, Lavanya Vishvanath, Ashwani Kumar, Chao Xing, Qiong A. Wang, Laurent Gautron, Yingfeng Deng, Ruth Gordillo, Ilja Kruglikov, Christine M. Kusminski, Rana K. Gupta, Philipp E. Scherer

×

Abstract

Angelman syndrome (AS) is a neurodevelopmental disorder characterized by intellectual disability, lack of speech, ataxia, EEG abnormalities, and epilepsy. Seizures in AS individuals are common, debilitating, and often drug-resistant. Therefore, there is an unmet need for better treatment options. Cannabidiol (CBD), a major phytocannabinoid constituent of cannabis, has antiseizure activity and behavioral benefits in preclinical and clinical studies for some disorders associated with epilepsy, suggesting that the same could be true for AS. Here we show that acute CBD (100 mg/kg) attenuated hyperthermia- and acoustically-induced seizures in a mouse model of AS. However, neither acute CBD nor a two-weeklong course of CBD administered immediately after a kindling protocol could halt the pro-epileptogenic plasticity observed in AS model mice. CBD had a dose-dependent sedative effect, but did not have an impact on motor performance. CBD abrogated the enhanced intracortical local field potential power, including delta and theta rhythms observed in AS model mice, indicating that CBD administration could also help normalize the EEG deficits observed in individuals with AS. Our results provide critical preclinical evidence supporting CBD treatment of seizures and alleviation of EEG abnormalities in AS, and will thus help guide the rational development of CBD as an AS treatment.

Authors

Bin Gu, Manhua Zhu, Madison R. Glass, Marie Rougié, Viktoriya D. Nikolova, Sheryl S. Moy, Paul R. Carney, Benjamin D. Philpot

×

Advertisement

September 2019

September 2019 Issue

On the cover:
Immunosuppressive effects of tumor-intrinsic EPHA2 expression

Immunotherapies harness the cytotoxic functions of CD8+ T cells to exert a robust anti-tumor response, but inadequate T cell infiltration within the tumor microenvironment can limit clinical efficacy. Markosyan, Li, and colleagues report that tumors expressing the ephrin receptor EPHA2 have poor T cell infiltration as well as poor response to checkpoint immunotherapy. Targeting an immunosuppressive EPHA2/PTGS2 axis restored the efficacy of immunotherapy in a mouse model of therapy-resistant pancreatic ductal carcinoma. The cover image illustrates the dichotomy between immunologically “hot” and “cold” tumors as a yin and yang, with prominent infiltration by T cells (red fish) or myeloid cells (blue fish). In cold tumors, cancer cells (lily pads) express EPHA2 and PTGS2 (flowers), tipping the balance toward a noninflamed phenotype. The abundance and activity of infiltrating T cells predicts response to immunotherapy. Image credit: Yuheng Ouyang.

×

September 2019 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Reparative Immunology

Series edited by Hamid Rabb and Franco D'Alessio

The immune system mounts a rapid inflammatory response to injury to mobilize cells and molecular pathways that promote hemostasis and prevent infection, but this acute response is only the first phase of recovery. Wound repair and inflammation-resolving processes are essential to recovering homeostasis in the aftermath of an injury: inefficient healing or prolonged inflammation can drive chronic dysfunction in the affected tissue. The Reparative Immunology series highlights the immune system’s contributions to these critical repair processes, from the roles of T cells, macrophages, neutrophils, and innate lymphoid cells in physiological repair to the influence of cytokine signaling, immunometabolism, and epigenetic reprogramming on pathological outcomes of injury. Together, these reviews emphasize the complexity of the immune environment in injured tissue and indicate numerous potential opportunities to intervene in dysfunctional wound-healing.

×