Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection

H Aegerter, J Kulikauskaite, S Crotta, H Patel… - Nature …, 2020 - nature.com
H Aegerter, J Kulikauskaite, S Crotta, H Patel, G Kelly, EM Hessel, M Mack, S Beinke…
Nature immunology, 2020nature.com
Despite the prevalence and clinical importance of influenza, its long-term effect on lung
immunity is unclear. Here we describe that following viral clearance and clinical recovery, at
1 month after infection with influenza, mice are better protected from Streptococcus
pneumoniae infection due to a population of monocyte-derived alveolar macrophages (AMs)
that produce increased interleukin-6. Influenza-induced monocyte-derived AMs have a
surface phenotype similar to resident AMs but display a unique functional, transcriptional …
Abstract
Despite the prevalence and clinical importance of influenza, its long-term effect on lung immunity is unclear. Here we describe that following viral clearance and clinical recovery, at 1 month after infection with influenza, mice are better protected from Streptococcus pneumoniae infection due to a population of monocyte-derived alveolar macrophages (AMs) that produce increased interleukin-6. Influenza-induced monocyte-derived AMs have a surface phenotype similar to resident AMs but display a unique functional, transcriptional and epigenetic profile that is distinct from resident AMs. In contrast, influenza-experienced resident AMs remain largely similar to naive AMs. Thus, influenza changes the composition of the AM population to provide prolonged antibacterial protection. Monocyte-derived AMs persist over time but lose their protective profile. Our results help to understand how transient respiratory infections, a common occurrence in human life, can constantly alter lung immunity by contributing monocyte-derived, recruited cells to the AM population.
nature.com