[HTML][HTML] Genetic Deletion of NOD1 Prevents Cardiac Ca2+ Mishandling Induced by Experimental Chronic Kidney Disease

M Gil-Fernández, JA Navarro-García… - International journal of …, 2020 - mdpi.com
M Gil-Fernández, JA Navarro-García, A Val-Blasco, L González-Lafuente, JC Martínez…
International journal of molecular sciences, 2020mdpi.com
Risk of cardiovascular disease (CVD) increases considerably as renal function declines in
chronic kidney disease (CKD). Nucleotide-binding oligomerization domain-containing
protein 1 (NOD1) has emerged as a novel innate immune receptor involved in both CVD
and CKD. Following activation, NOD1 undergoes a conformational change that allows the
activation of the receptor-interacting serine/threonine protein kinase 2 (RIP2), promoting an
inflammatory response. We evaluated whether the genetic deficiency of Nod1 or Rip2 in …
Risk of cardiovascular disease (CVD) increases considerably as renal function declines in chronic kidney disease (CKD). Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) has emerged as a novel innate immune receptor involved in both CVD and CKD. Following activation, NOD1 undergoes a conformational change that allows the activation of the receptor-interacting serine/threonine protein kinase 2 (RIP2), promoting an inflammatory response. We evaluated whether the genetic deficiency of Nod1 or Rip2 in mice could prevent cardiac Ca2+ mishandling induced by sixth nephrectomy (Nx), a model of CKD. We examined intracellular Ca2+ dynamics in cardiomyocytes from Wild-type (Wt), Nod1−/− and Rip2−/− sham-operated or nephrectomized mice. Compared with Wt cardiomyocytes, Wt-Nx cells showed an impairment in the properties and kinetics of the intracellular Ca2+ transients, a reduction in both cell shortening and sarcoplasmic reticulum Ca2+ load, together with an increase in diastolic Ca2+ leak. Cardiomyocytes from Nod1−/−-Nx and Rip2−/−-Nx mice showed a significant amelioration in Ca2+ mishandling without modifying the kidney impairment induced by Nx. In conclusion, Nod1 and Rip2 deficiency prevents the intracellular Ca2+ mishandling induced by experimental CKD, unveiling new innate immune targets for the development of innovative therapeutic strategies to reduce cardiac complications in patients with CKD.
MDPI