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Clonal hematopoiesis of indeterminate potential (CHIP) is associated with an increased risk of cardiovascular diseases 
(CVDs), putatively via inflammasome activation. We pursued an inflammatory gene modifier scan for CHIP-associated 
CVD risk among 424,651 UK Biobank participants. We identified CHIP using whole-exome sequencing data of blood DNA 
and modeled as a composite, considering all driver genes together, as well as separately for common drivers (DNMT3A, 
TET2, ASXL1, and JAK2). We developed predicted gene expression scores for 26 inflammasome-related genes and assessed 
how they modify CHIP-associated CVD risk. We identified IL1RAP as a potential key molecule for CHIP-associated CVD 
risk across genes and increased AIM2 gene expression leading to heightened JAK2- and ASXL1-associated CVD risk. We 
show that CRISPR-induced Asxl1-mutated murine macrophages had a particularly heightened inflammatory response to 
AIM2 agonism, associated with an increased DNA damage response, as well as increased IL-10 secretion, mirroring a CVD-
protective effect of IL10 expression in ASXL1 CHIP. Our study supports the role of inflammasomes in CHIP-associated CVD 
and provides evidence to support gene-specific strategies to address CHIP-associated CVD risk.
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mon variant known to disrupt IL6R and associate with modestly 
reduced CVD risk in the general population — had greater reduc-
tions in CVD risk when also carrying DNMT3A or TET2 CHIP 
mutations versus those without (7). However, recent murine work 
indicates that different CHIP genes may confer CVD risk differen-
tially. For example, among atherogenic transgenic mice expressing 
Jak2VF, bone marrow genetic deficiency of the absent in melanoma 
2 (Aim2) inflammasome mitigated atherosclerotic lesion develop-
ment (15). Whether these findings extend to humans is currently 
not well understood. In general, the range of inflammatory cyto-
kines differentially influencing CVD risk by CHIP genes in humans 
requires further study. Prioritization by human genetics may yield 
or bolster new approaches to CVD precision medicine (19).

To overcome risks of confounding from biomarker correlation 
analyses, we leveraged genetics to pursue a broader inflammatory 
gene modifier scan for CHIP-associated CVD among 424,651 UK 
Biobank participants by performing blood DNA exome sequencing 
for CHIP genotyping; array-derived genome-wide genotyping for 
transcriptomic imputation; and assessment of baseline and inci-
dent clinical outcomes. We developed predicted gene expression 
scores for genes related to the NLRP3 and AIM2 inflammasomes 
based on externally trained data and conducted independent vali-
dation. Then we assessed whether and to what extent the predict-

Introduction
Clonal hematopoiesis (CH) of indeterminate potential (CHIP) is 
the age-related acquisition and expansion of somatic mutations 
of genes frequently mutated in hematologic malignancies (e.g., 
DNMT3A, TET2, ASXL1, or JAK2) (1) detected by sequencing 
blood DNA among asymptomatic individuals. CHIP is common 
among older adults, affecting at least 1 in 10 adults over 70 years 
(2–5). CHIP is associated with an increased risk of hematologic 
malignancy and all-cause mortality (3, 4), as well as a range of car-
diovascular diseases (CVDs) (6–10). Recent evidence, primarily 
from murine and cell-based studies, suggests that dysregulated 
inflammation may be a key contributor to the augmented risk of 
CVD conferred by certain CHIP mutations (6, 11–14).

Heightened IL-1β signaling, a key inflammatory pathway, 
promotes the development of CHIP-associated atherosclerosis in 
Tet2 CHIP as initially disclosed largely by murine studies (6, 11). 
Inhibition of the NOD-, LRR-, and pyrin domain-containing pro-
tein 3 (Nlrp3) inflammasome abrogates accelerated atherosclero-
sis in atherogenic mice with hematopoietic Tet2 deficiency versus 
WT (11, 15). In humans, CHIP is associated with increased gene 
expression and circulating concentrations of NLRP3 downstream 
products, particularly in the context of TET2-mutant CHIP (TET2 
CHIP) (16–18). Individuals harboring IL6R p.Asp358Ala — a com-

Figure 1. Study schematics. CHIP was identified using whole-exome sequencing data of blood DNA. Predicted expression scores for inflammatory genes 
were developed based on cis-eQTL results and validated using measured RNA-Seq data; we then examined whether they modified CHIP-associated CVD 
risk. Predicted expression scores that significantly modified CHIP-associated CVD risk were further validated in a mouse model and evaluated for their 
associations with hematopoietic and cardiometabolic traits.
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events (a composite of myocardial infarction, coronary artery 
disease [CAD] or revascularization, stroke, or death (7) were 
observed. The presence of composite CHIP associated with 
increased CVD event risk independent of potential confound-
ers (age, sex, White British ancestry, BMI at the time of enroll-
ment, ever-smoker status, diagnosis of type 2 diabetes mellitus 
at the time of enrollment, and the first 10 principal components 
of genetic ancestry with a composite effect of HR 1.18 (95% CI: 
1.14–1.22, P = 1.5 × 10–21). Among the top CHIP genes, CVD effects 
varied by gene, with JAK2 2.81-fold (95% CI 2.25–3.51, P = 8.5 × 
10–20), ASXL1 1.41-fold (95% CI 1.29–1.54, P = 3.5 × 10–14), TET2 
1.11-fold (95% CI 1.03–1.19, P = 4.5 × 10–3), and DNMT3A 1.06-fold 
(95% CI 1.01–1.11, P = 0.01). Other CHIP genes also showed signif-
icant associations with CVD incidence, with SRSF2 2.6-fold (95% 
CI 2.18–3.09, P = 6.8 × 10–27), SF3B1 1.47-fold (95% CI 1.14–1.89,  
P = 2.9 × 10–3), TP53 1.43-fold (95% CI 1.18–1.72, P = 2.2 × 10–4), and 
PPM1D 1.39-fold (95% CI 1.18–1.64, P = 7.6 × 10–5). Large clones 
generally demonstrated greater effects, with large CHIP associat-
ed with 1.29-fold (95% CI 1.24–1.35, P = 8.6 × 10–29) incident CVD 
risk (Table 2) (16). Sensitivity analyses restricting the outcome to 
CAD alone resulted in attenuated increases (Supplemental Table 1;  
supplemental material available online with this article; https://
doi.org/10.1172/JCI168597DS1)

Predicted expression of inflammatory genes. We expanded the 
examination for CHIP modifiers through two dimensions: (i) In 
addition to a composite of all CHIP mutations at any driver genes, 
we examined the most commonly mutated CHIP genes individ-
ually (6), such as DNMT3A, TET2, ASXL1, and JAK2. (ii) In addi-
tion to IL6R, we generated predicted expression levels of all other 
inflammatory genes that are implicated in or closely related to the 
NLRP3 and AIM2 inflammasome pathways, including NLRP3, 
IL1B, IFNG, IL18, CARD8, CASP1, CASP5, DHX33, IFNGR1,  
IFNGR2, IL1R1, IL1R2, IL1RAP, IL6, IL6ST, IL10, IL18BP, IL18R1, 
IL18RAP, IRF1, JAK1, JAK2, JAK3, NEK7, NLRC4, SOCS, STAT1, 
STAT3, STAT4, STAT5A, STAT6, TNF, and TYK2 (see Methods 
and Supplemental Figure 1).

We developed predicted expression scores based on summary 
statistics of the whole-blood or PBMC cis-expression quantitative 
trait locus (eQTL) results for the corresponding genes from the 
eQTLGen Consortium (20). For each selected gene, we used both 
the pruning and thresholding (P+T) method (21) and the polygen-
ic risk score–continuous shrinkage (PRS-CS) method (22) to gen-
erate a series of candidate scores for participants with European 
ancestry (EA) and non-EA separately; they were then tuned using 
nonoverlapping individual-level RNA-Seq data from the Fram-
ingham Heart Study (FHS; whole blood) and Multi-Ethnic Study 
of Atherosclerosis (MESA; PBMCs) (23, 24). The final predicted 
expression score of each gene was selected based on the propor-
tion of the variance (r2) of experimentally measured expression 
levels that can be explained by the candidate scores (see Meth-
ods). For most genes, the P+T method generated a better score 
performance than PRS-CS (Supplemental Table 2). For this analy-
sis, we continued studying genes whose selected best-performing 
predicted expression scores had r2 > 1% among EA participants, 
resulting in scores for 26 (of 35 total evaluated) genes. The predict-
ed expression scores explained a median of 3.5% (IQR 1.8%–6.3%) 
of the adjusted variance of corresponding gene expression levels 

ed gene expression modifies CHIP-associated CVD risk. Last, we 
validated a human genomics–based discovery in a murine mod-
el. Broadly, we demonstrate a systematic approach to prioritizing 
potential therapeutic strategies for CHIP-associated disease.

Results
Baseline characteristics of the UK Biobank cohort. The schematic of 
this study is shown in Figure 1. Among the 417,570 unrelated par-
ticipants enrolled in the UK Biobank study who underwent exome 
sequencing and were free of hematologic cancers and composite 
CVD events at baseline, the mean age was 56.3 (SD 8.1) years, and 
185,492 (44.4%) were men and 286,078 (55.6%) were women. We 
identified 25,784 (6.2%) individuals with CHIP mutations, with a 
mean age of 59.7 (SD 7.1). Among participants with CHIP mutations, 
92.6% had only 1 driver mutation; 14,297 (55.4%) had mutations in 
DNMT3A, 5,133 (19.9%) in TET2, and 2,436 (9.1%) in ASXL1. Two 
hundred and forty-eight participants (1.0%) had JAK2 mutations, 
222 (89.5%) of whom had JAK2 p.V617F and 241 (97.2%) had large 
clones, defined as having a variant allele fraction (VAF) of greater 
than 10%. Consistent with previous reports, participants with CHIP 
versus those without were on average 4 years older, were more like-
ly to be White, had higher BMI, be ever-smokers, and had a higher 
prevalence of cardiovascular comorbidities, including hyperten-
sion, hyperlipidemia, and type 2 diabetes mellitus (Table 1).

Associations between CHIP mutations and incident CVD. During 
the 11.0-year median follow-up, 44,962 (10.6%) incident CVD 

Table 1. Characteristics of the study population in the UK 
Biobank (n = 417,570)

MetricA No CHIP, n = 391,786 CHIP, n = 25,784 P valueB

Age (yr) 56.1 (8.1) 59.7 (7.1) <0.001
Male 174,091 (44.4) 11,401 (44.2) 0.50
White British ancestry 327,917 (83.7) 21,822 (84.6) <0.001
BMI (kg/m2) 27.3 (4.7) 27.4 (4.6) 0.02
Ever-smoker 171,812 (43.9) 12,614 (48.9) <0.001
HypertensionC 106,598 (27.2) 8,353 (33.4) <0.001
HypercholesterolemiaC 53,162 (13.4) 4,240 (16.1) <0.001
Type 2 diabetesC 7,422 (1.9) 626 (2.4) <0.001
Among CHIP carriers

DNMT3A NA 14,297 (55.4) NA
Large DNMT3AD NA 6,005 (23.3) NA

TET2 NA 5,133 (19.9) NA
Large TET2 NA 2,223 (8.6) NA

ASXL1 NA 2,346 (9.1) NA
Large ASXL1 NA 1,146 (4.4) NA

JAK2 NA 248 (1.0) NA
Large JAK2 NA 241 (0.9) NA

AMetrics are presented as mean (SD) for continuous variables and n (%) 
for categorical variables. BP values calculated with a 2-sample t test for 
continuous traits or χ2 test for categorical traits. CClinical conditions were 
those occurring prior to enrollment. DLarge CHIP was defined as VAF > 10%. 
The study population was restricted to unrelated individuals in the UK 
Biobank who had exome sequencing data and were free of hematological 
cancers and composite CVD events at baseline, with unrelatedness defined 
as less than third-degree relatedness.

https://doi.org/10.1172/JCI168597
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in plaques of Jak2VF CHIP mice (15). These findings support the 
translational relevance of murine models of Jak2VF CHIP.

Second, we observed modification effects of the predicted 
expression level of IL1RAP on incident CVD risk associated with 
composite CHIP, DNMT3A CHIP, and JAK2 CHIP mutations. 
IL1RAP encodes IL-1 receptor accessory protein (IL-1RAP), a 
coreceptor involved in several inflammatory signaling pathways 
and the lack of which completely abrogates cellular response to 
IL-1 (25–28). For 1 SD increase in the predicted expression score 
for IL1RAP, HRs were 1.04 (95% CI 1.01–1.07) in the presence of 
composite CHIP mutations, 1.06 (95% CI 1.02–1.11) in the pres-
ence of DNMT3A mutations, and 1.38 (95% CI 1.13–1.69) in the 
presence of JAK2 mutations; in contrast with HRs of 1.00 (95% 
CI 0.99–1.01), 1.00 (95% CI 0.99–1.01), and 1.00 (95% CI 0.99–
1.01) among participants without these mutations (FDR for inter-
action, 0.04, 0.04, and 0.04, respectively). While the relationship 
for TET2 was directionally consistent, no significant association 
was observed. This result implicates IL1RAP as a potentially key 
IL-1β/IL-6 pathway–related molecule for CHIP-associated CVD 
risk across genes (7, 11).

Third, we identified potential modification effects of the pre-
dicted expression of AIM2 and IL10 on ASXL1-associated CVD 
risk. In addition to the effect of the AIM2’s aforementioned inter-
action with JAK2 on CVD risk, predicted AIM2 expression simi-
larly modified ASXL1-associated CVD disease risk (ASXL1 muta-
tion present: HR 1.14, 95% CI 1.02–1.28; ASXL1 mutation absent: 
HR 0.99, 95% CI 0.98–1.00; FDR for interaction, 0.04). Similar 
effects were not observed for DNMT3A- or TET2-associated CVD. 
IL10 is expressed in atherosclerotic plaques, and its encoded pro-
tein, IL-10, is an antiinflammatory cytokine that inhibits many 
cellular processes that advance human atherosclerosis (29–37). 
The protective effect of IL-10 was pronounced in the presence of 
ASXL1 mutation, with its predicted expression score associated 
with a significantly decreased risk of incident CVD (HR 0.91, 95% 
CI 0.83–0.99, P = 0.04) in the presence of ASXL1 mutation but a 
null effect (HR 1.00, 95% CI 0.99–1.01, P = 0.91) in its absence 
(FDR for interaction, 0.06). Another molecule implicated was 
IL18RAP, which encodes IL-18RAP. IL-18RAP enhances the IL-18–
binding activity of the IL-18 receptor and plays a role in signaling 
by the inflammatory cytokine IL-18 (38). However, we observed 
attenuated CVD risk associated with the predicted expression 
score of IL18RAP among participants with ASXL1 mutation (HR 
0.90, 95% CI 0.83–0.98, P = 0.02) but not those without (HR 1.00, 
95% CI 0.99–1.01, P = 0.41; FDR for interaction, 0.04). These 
results are shown in Figures 3 and 4, and Supplemental Tables 3 
and 4. These identified inflammatory expression scores that mod-
ify CHIP variable–associated CVD risk were not associated with 
the corresponding CHIP variable, with JAK2 gene expression and 
JAK2 CHIP mutation (FDR = 6.1 × 10–6) as the exception.

AIM2 inflammasome activation in macrophages harboring Asxl1 
mutations. Our findings indicated that the predicted expression 
score of AIM2 was associated with an increased risk of CVD events 
in patients with JAK2 and ASXL1 CH (Figures 3 and 4). While AIM2 
inflammasome activation has been linked to JAK2 CH (15, 39), the 
AIM2 inflammasome has not previously been associated with 
ASXL1. To understand whether Asxl1 mutations promote AIM2 
inflammasome activation, we introduced truncation mutations 

among EA participants. The score for IL18RAP explained the larg-
est proportion of phenotypic variance (34.7%), and that for IL1B 
explained the least variance (1.05%) among analyzed genes with 
r2 > 1% (Figure 2 and Supplemental Table 2).

Modification of CHIP-associated CVD risk by predicted expres-
sion of inflammatory genes. We observed significant associations 
between predicted expression scores of several inflammatory 
genes and incident CVD risk with the presence of CHIP or spe-
cific CHIP gene(s) (collectively called CHIP variables), while 
the corresponding associations for those without CHIP were all 
nonsignificant. We carried forward predicted expression scores 
that were significantly associated with incident CVD risk at a P 
< 0.05 level only in the presence of CHIP variable(s) to evaluate 
how the interactions between those scores and the correspond-
ing CHIP variables (n = 9 pairs) associated with primary CVD 
outcome (Figures 3 and 4).

Regarding specific modification pairs, first we found evidence 
supporting recent murine findings (15) in humans in our observa-
tion that a genetic predisposition to higher AIM2 expression was 
associated with amplified risk for incident CVD for those with 
JAK2 CHIP. One SD increase in predicted expression score for 
AIM2 was associated with an almost 2-fold increased risk in CVD 
incidence (HR 1.85, 95% CI 1.12–3.07, P = 0.02) among participants 
with JAK2 mutations. In contrast, the predicted expression score 
for AIM2 was not associated with incident CVD event risk in those 
without JAK2 mutations (HR 0.99, 95% CI 0.98–1.00, P = 0.16), 
which was significantly different for those with JAK2 CHIP (FDR 
for interaction, 0.04). Mice expressing Jak2VF in bone marrow had 
a 2-fold increase in atherosclerotic lesion development, which was 
reduced by genetic ablation of Aim2 in mutant cells (15). More-
over, the CVD risk associated with JAK2VF CHIP was augmented 
by higher predicted expression of IFNGR1. IFN-γ increased Aim2 
expression in Jak2VF BMDMs, and AIM2 levels were increased 

Table 2. Associations between CHIP mutation and incidence of 
CVD event

Presence of CHIP Presence of large CHIPA

HR (95% CI) P value HR (95% CI) P value
CHIP 1.18 (1.14–1.22) 1.5 × 10–21 1.29 (1.24–1.35) 8.6 × 10–29

DNMT3A 1.06 (1.01–1.11) 0.01 1.13 (1.06–1.21) 3.9 × 10–4

TET2 1.11 (1.03–1.19) 4.5 × 10–3 1.28 (1.16–1.41) 5.8 × 10–7

ASXL1 1.41 (1.29–1.54) 3.5 × 10–14 1.52 (1.35–1.71) 4.1 × 10–12

JAK2 2.81 (2.25–3.51) 8.5 × 10–20 2.80 (2.23–3.50) 3.3 × 10–19

PPM1D 1.39 (1.18–1.64) 7.6 × 10–5 1.46 (1.13–1.88) 3.9 × 10–3

TP53 1.43 (1.18–1.72) 2.2 × 10–4 2.04 (1.57–2.65) 1.0 × 10–7

SRSF2 2.60 (2.18–3.09) 6.8 × 10–27 3.32 (2.72–4.04) 1.1 × 10–32

SF3B1 1.47 (1.14–1.89) 2.9 × 10–3 1.55 (1.16–2.06) 2.9 × 10–3

ALarge CHIP was defined as VAF > 10%. CVD event outcome was defined as 
a composite of myocardial infarction, CAD or revascularization, stroke, or 
death. BModels were adjusted for age at the time of enrollment, sex, White 
British ancestry, BMI, diagnoses of type 2 diabetes mellitus at the time 
of enrollment, diagnoses of hypertension at the time of enrollment, ever-
smoker status, and the first 10 principal components of genetic ancestry. 
Participants with prevalent hematological cancers or CVD were removed 
from the analyses.

https://doi.org/10.1172/JCI168597
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Asxl1-mutant cells (Figure 5, H and I). These observations suggest 
that Asxl1 mutant macrophages have increased Il1b expression 
and increased DNA damage that together lead to increased AIM2 
inflammasome activation.

Asxl1-mutant macrophages have pro- and antiinflammatory 
characteristics. Although AIM2 inflammasome activation has been 
shown to be sufficient to promote atherosclerosis in Jak2 CH (15), 
our findings suggest that other pathways may also contribute to 
ASXL1-mediated CVD risk (Figure 3 and 4). Therefore, we exam-
ined inflammatory mediators secreted by BMDMs under baseline 
and LPS-stimulated conditions. In response to LPS, Asxl1-mutant 
macrophages had no change in Il6 expression; however, IL-6 
secretion was increased (Figure 6, A and B), which is consistent 
with elevated IL-6 in serum from patients with ASXL1 CH (16). 
Interestingly, Tnfa expression and secretion were both reduced in 
Asxl1-mutant macrophages (Figure 6, C and D), while we did not 
see a similar suppression of other LPS-sensitive genes, such as Il1b, 
Il6, Il1a, Ccl3, and Tgfb (Figure 5C and Figure 6, A, E, and F). These 
observations suggest that although LPS-induced inflammatory 

into mouse hematopoietic stem and progenitor cells (HSPCs) in 
exon 12 of Asxl1 using CRISPR (Figure 5A). Bone marrow–derived 
macrophages (BMDMs) from mice with CRISPR guides (control) 
or Asxl1 mutations (Asxl1-G623*) showed no genotype-dependent 
alteration in NLRP3 inflammasome activation when challenged 
with LPS and ATP (Figure 5B). In contrast, Asxl1-mutant macro-
phages demonstrated a selective increase in AIM2 inflammasome 
activation when treated with the double-stranded DNA fragments 
(pdAdT) (Figure 5B). Consistent with increased inflammasome 
activation, Asxl1-mutant macrophages had increased LPS-induced 
Il1b production without altered Casp1 or Il1rap expression (Fig-
ure 5, C–E). LPS-induced Nlrp3 expression was reduced in Asxl1- 
mutant macrophages (Figure 5F), which may explain why we did 
not observe increased NLRP3 activation even in the presence of 
increased Il1b. Aim2 expression was unchanged in Asxl1-mutant 
macrophages (Figure 5G). Since the AIM2 inflammasome may be 
activated in response to DNA damage, we measured p-γ-H2AX, 
a marker of nuclear DNA damage and double-strand break for-
mation (40), and found a significant increase in p-γ-H2AX in 

Figure 2. Proportion of the variance of experimentally measured expression levels that can be explained by predicted expression scores for inflam-
matory genes among participants with EA. Inflammatory genes were identified through canonical pathways and protein-protein interactions based on 
STRING. Predicted expression scores for examined genes were calculated by applying either the P+T or PRS-CS method to the summary statistics of the 
eQTL for those genes from the eQTLGen consortium (https://www.eqtlgen.org/) and validated using experimental measured RNA-Seq data in MESA 
(PBMCs) and FHS (whole blood). Since the eQTL source data were from either PBMCs or whole blood, we report the largest r2 of the measured transcrip-
tome levels in either FHS or MESA.
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signaling was largely intact in Asxl1-mutant macrophages, some 
components may be disrupted, potentially due to Asxl1-mediated 
changes in chromatin accessibility. We found that the predicted 
expression of IL10 may play a protective role in ASXL1-mediated 
CVD risk in humans (Figures 3 and 4), and IL-10 is also a potent 
inhibitor of TNF-α. Therefore, we examined whether IL-10 was 
dysregulated in the presence of Asxl1 mutations. We observed that 
stimulation with LPS increased expression of the antiinflammato-
ry mediator Il10 more than 2-fold in Asxl1-mutant BMDMs com-
pared to control and resulted in a similar increase in secreted IL-10 
(Figure 6, H and I); this was paralleled by an increase in the Il10 
target gene Socs3 (Figure 6J). Socs3 was also found to be increased 
in Asxl1-mutant zebrafish (41). Thus, our population genetic data 
identified the predicted expression of IL10 as a potential suppres-
sor of ASXL1-mediated CVD, which is supported by functional 
studies suggesting that IL-10 levels and signaling are increased 
in Asxl1-mutant macrophages and may play an important role in 
inflammation regulation.

Asxl1 mutations and atherosclerosis. To determine the impact 
of Asxl1 on atherosclerosis, we attempted to model Asxl1 CH by 
transplanting CD45.2+Cas9+ transgenic long-term hematopoietic 
stem cells (LT-HSCs) infected with control (nontargeting guide 

RNAs) or Asxl1-G623* guide RNAs mixed with CD45.1+ WT cells 
into lethally irradiated Ldlr–/– mice. We then placed mice on a 
Western-type diet (WTD) to induce hypercholesteremia (Figure 
7A). Asxl1 mutations did not alter leukocyte counts in blood or 
spleen weight (Figure 7, B–F). Asxl1-mutant blood cells made up 
only approximately 15% of lymphocytes, 5% of neutrophils, and 
2% of blood monocytes by the end of the study (Figure 7, G–I), 
indicating a very low mutation burden in these animals. Histologi-
cal analysis of aortic root lesions indicated no change in the lesion 
area or necrotic core area (Figure 7, J–L). Our current observations 
are consistent with previous reports showing impaired initial HSC 
proliferation and clonal expansion in Asxl1 CHIP mice and suggest 
that a much longer follow-up time (>1 year) may be needed to pro-
mote atherosclerosis development in the Asxl1 mouse model (42).

Associations with hematopoietic traits and cardiometabolic 
biomarkers. We examined the associations between the 8 CHIP 
mutation–predicted gene expression score pairs that had shown 
significant modification of CVD incidence in our study and 31 
hematopoietic traits and 5 common cardiometabolic biomark-
ers among participants with the corresponding CHIP mutations. 
After accounting for multiple-hypothesis testing (n = 248 [8 × 31] 
for hematopoietic traits and n = 40 [8 × 5] for cardiometabolic  

Figure 3. HR of 1 SD increment in predicted expression scores of inflammatory genes on CVD event incidence stratified by CHIP mutation status. 
Inflammatory genes were identified through canonical pathways and protein-protein interactions based on STRING. Predicted expression scores for 
examined genes were calculated by applying either the P+T or PRS-CS method to the summary statistics of the eQTL for those genes from the eQTLGen 
Consortium and validated using experimentally measured RNA-Seq data in MESA (PBMCs) and FHS (whole blood). CVD event outcome was defined as a 
composite of myocardial infarction, CAD or revascularization, stroke, or death. Black indicates the absence of CHIP mutations, and all other colors indicate 
the presence of CHIP mutations. Filled circles indicate a significant association at the P < 0.05 level. Red text for gene names indicates a significant asso-
ciation between the corresponding expression score and CVD outcome in the presence of CHIP mutation at the P < 0.05 level.
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biomarkers), we did not observe any significant associations achiev-
ing a value below the FDR threshold of 0.05. The suggestive nom-
inal associations were observed between the predicted expression 
score of IL18RAP and reduced eosinophil count and eosinophil per-
centage among individuals with ASXL1 mutations (P = 0.002 and  
P = 0.003, respectively). This is in line with previous cap analysis of 
gene expression (CAGE) sequencing data showing that IL18RAP is 
highly expressed in eosinophils, neutrophils, and NK cells (43) (Sup-
plemental Figure 2 and Supplemental Tables 5 and 6).

Discussion
Leveraging validated human genetic instruments, we showed that 
specific inflammatory genes may influence incident CVD risk in a 
manner that is specific to the presence of mutations in key CHIP 
genes. Our observations are consistent with the notions that reduced 
AIM2 expression could specifically mitigate JAK2 mutation– 
associated CVD risk and that IL1RAP is a key molecule for 
CHIP-associated CVD risk across multiple CHIP genes — findings 
in agreement with prior murine studies. Furthermore, we discov-
ered that modification of AIM2 expression could affect ASXL1- 
associated CVD risk in humans, and corroborated this finding 
in CRISPR-induced Asxl1-mutated murine BMDMs. Our obser-
vations provide human genetic and preclinical support toward  

precision-medicine paradigms for CVD that we believe merit 
assessment in prospective studies.

Our study has 3 key implications. First, our findings further 
show that CVD prognosis and mechanism are distinguished 
according to the implicated CHIP gene. Prior studies showed 
that NLRP3 inflammasome inhibition mitigates the heightened 
atherogenesis observed in Tet2-chimeric atherogenic mice com-
pared to atherogenic mice WT for Tet2 (11). Correspondingly, a 
common disruptive coding variant in IL6R (a downstream medi-
ator of NLRP3) modifies TET2 or DNMT3A-associated CVD 
risk among humans (7, 45). A post hoc exploratory analysis of a 
completed clinical trial of a monoclonal antibody targeting IL-1B 
(also a downstream mediator of NLRP3) supports this finding 
(45). Recently, it was observed that atherogenic mice expressing 
Jak2VF displayed a 2-fold increase in atherosclerotic lesion area 
with increased features of plaque instability that were reduced in 
the presence of hematopoietic Aim2 deficiency. The present study 
used human genetics as an instrument and observed similar atten-
uation effects, with genetically predicted lower expression levels 
of AIM2 on JAK2-associated CVD risk. These data lend support 
for addressing JAK2-associated increased CVD risk through AIM2 
inflammasome inhibition.

Furthermore, we discovered AIM2’s potential modulatory 
role for ASXL1-associated CVD risk in humans and validated this 
by demonstrating increased AIM2 inflammasome activation in 
BMDMs harboring CRISPR-induced Asxl1 mutation. In contrast, 
Asxl1 mutations did not alter NLRP3 inflammasome activation, 
which is implicated in TET2-associated CAD (11). We further 
explored the underlying mechanisms. Prior studies showed that 
Asxl1-mutant knockin mice had elevated reactive oxygen species 
and increased DNA damage (42), and our work further linked 
the induced DNA damage to AIM2 inflammasome activation. 
Regarding the proposed mechanism, we noted that mutated 
ASXL1 formed a complex with BAP1, leading to enhanced histone 
deubiquitylation activity. Given the well-documented role of BAP1 
in the DNA damage response through posttranslational modifica-
tions of histones (46, 47), it is likely that binding of BAP1 to mutat-
ed ASXL1 may suppress the DNA damage response pathway, caus-
ing double-strand DNA breaks to accumulate.

Second, our Asxl1-mutant macrophage experiments demon-
strated both pro- and antiinflammatory properties, a feature of 
Asxl1 that has been previously reported in zebrafish by Avagyan et 
al. (41). Our study revealed a complex expression profile in Asxl1- 
mutant macrophages, potentially linked to alterations in chroma-
tin architecture due to direct histone modifications by ASXL1 (48). 
Although we noted an increase in IL-6 secretion, our results also 
demonstrated a decrease in Tnfa expression and secretion. Con-
currently, we found an increase in expression and secretion of Il10, 
a Tnfa inhibitor, in Asxl1-mutant macrophages in murine models. 
Concordantly, increased predicted IL10 expression was associ-
ated with reduced CVD risk in ASXL1 CHIP. Together these find-
ings could indicate an important antiinflammatory role for IL-10 
expression linked to suppression of CVD in ASXL1 CHIP.

Third, we observed that increased genetic predisposition to 
IL1RAP expression yielded increased incident CVD risk for partic-
ipants with DNMT3A or JAK2 CHIP mutations. IL-1RAP is a trans-
membrane protein that potentiates multiple inflammatory signal-

Figure 4. Heatmap for z scores of interactions between CHIP mutations 
and predicted expression scores of inflammatory genes on CVD event 
incidence. Only predicted expression scores significantly associated with 
CVD event incidence among participants with CHIP mutations were exam-
ined for their interactions in this step. Inflammatory genes were identified 
through canonical pathways and protein-protein interactions based on 
STRING. Predicted expression scores of examined genes were calculated 
by applying either the P+T or PRS-CS method to the summary statistics 
of the eQTL for those genes from the eQTLGen Consortium. CVD event 
outcome was defined as a composite of myocardial infarction, CAD or 
revascularization, stroke, or death. Black indicates a negative z score, and 
red indicates a positive z score. **Statistical significance at an FDR = 0.05 
level; *statistical significance at an FDR = 0.1 level. The darker the color, 
the stronger the effects.
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missense variant in IL6R (7). Furthermore, Dnmt3a-inactivated 
lineage-negative bone marrow cells versus WT cells transplanted 
into mice had greater IL-6 concentrations (55), and humans with 
DNMT3A mutations had greater expression of NLRP3-related 
cytokines among PBMCs (18). While the results above and a prior 
murine study support the role of AIM2 in JAK2 CHIP, IL-1β inhibi-
tion was shown to also influence indexes related to plaque stability 
in Jak2VF transgenic mice (15). Given the significant impact of pre-
dicted IL-1RAP expression across all CHIP-associated CAD risks, 

ing pathways, including IL-1, IL-33, IL-36G, and stem cell factor 
(27, 28), and it has the unique feature of being expressed at higher 
levels in stem and progenitor cells from myeloid leukemia patients 
compared to normal HSPCs (49–52). These properties of IL-1RAP 
led to several studies investigating the targetability of IL-1RAP 
as a treatment strategy for myeloid leukemia (25, 51, 53, 54) and 
may underlie its modification of CHIP-associated CVD and, 
potentially, other disease risks. These observations agree with 
the aforementioned human genetic observations using a common 

Figure 5. Inflammasome activation in BMDMs harboring Asxl1 mutations. BMDMs were harvested from mice harboring a mixture of either WT control 
(Nmt4) or Asxl1-mutated bone marrow (Asxl1-G623*) and WT bone marrow. (A) Sanger sequencing of Cas9-transgenic murine fibroblasts transfected with 
lentiviruses containing Asxl1 guides targeting exon 12; arrow indicates target site. (B) Inflammasome activation was marked by IL-1β in supernatant of 
BMDMs primed with LPS, then ATP was used to stimulate NLRP3 inflammasome or pdAdT was used to activate the AIM2 inflammasome; data are pre-
sented as fold change. (C–G) qPCR analysis of BMDMs at baseline or following 6-hour stimulation with 20 ng/mL LPS. (H) Western blot analysis of BMDMs 
at baseline or following 6 hours of stimulation with 20 ng/mL LPS. (I) Densitometric quantification of the Western blot. Data are mean ± SEM. Two-way 
ANOVA followed by Tukey’s post hoc test, B–G and I.
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expression levels from birth, which is well before the acquisition 
of age-related CHIP mutations. Thus, our analyses do not cap-
ture the modification effects after CHIP is manifest, which would 
more closely mimic what was observed in clinical trials. However, 
our approach was corroborated by modeling in murine macro-
phages by the introduction of an inflammatory stimulus after a 
CHIP mutation was introduced. Second, CHIP mutations remain 
uncommon in the unselected population, so power is limited for 
interaction analyses. Third, our framework is similarly dependent 
on suitable heritabilities of the gene expression instruments, and 
we are thus underpowered to detect associations for instruments 
with low heritabilities. Since we used individual-level validation 
data, we were able to exclude instruments with very low heritabil-
ities to optimize multiple-hypothesis testing. Fourth, the majority 
of participants in our study population — as well as the eQTLGen 
Consortium, which we used for generating the predicted expres-
sion score — were of EA (20, 60); therefore, our findings may not 
be generalizable to other ancestries. Finally, our computational 
approaches using human genetics discovered potential modifi-
cations of ASXL1-associated CVD risk, which was supported by 

whether IL-1RAP represents a more effective therapeutic target 
than individual inflammasomes or their downstream effectors 
warrants further study.

Finally, our approach of using genetically predicted expres-
sion as a therapeutic instrument in humans can potentially 
advance precision medicine for CVD and beyond. Precision med-
icine aims to identify and implement therapies that are maximally 
efficacious based on key features (56). We leveraged prior insights 
showing the value of human genetics for therapeutic development 
prioritization (19). Prior studies have similarly used genotype- 
imputed transcriptomics to nominate therapeutic targets (57–59). 
Given the overall relatively low heritability of inflammatory gene 
expression, we used both summary and individual-level training 
data to impute gene expression perturbations from human genet-
ics. We now compared effects by strata to identify subgroups that 
may clinically benefit to the greatest extent from inflammation 
modulation. Our subsequent murine validation lends overall sup-
port to this framework.

Our study has important limitations. First, the predicted 
expression scores for inflammatory genes are genetic proxies for 

Figure 6. Asxl1-mutant macrophages have pro- and antiinflammatory characteristics. BMDMs were untreated (baseline) or treated with 20 ng/mL 
LPS for 6 hours. (A) qPCR analysis. (B) ELISA quantification of protein in culture media. (C) qPCR analysis. (D) ELISA quantification of protein in culture 
media. (E–H) qPCR analysis. (I) ELISA quantification of protein in culture media. (J) qPCR analysis. Data are mean ± SEM. Two-way ANOVA followed by 
Tukey’s post hoc test, A–J.
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which we corroborated in CRISPR-induced Asxl1-mutant mouse 
macrophages. Our results may contribute to developing CHIP type– 
specific CVD therapies and advance precision medicine goals.

Methods
Study population. In the current analysis, we included the first 424,651 
unrelated participants enrolled in the UK Biobank study who under-
went exome sequencing of blood DNA and were free of hematologic 
cancer and CVD at baseline (61, 62). Between 2006 and 2010, approx-
imately 500,000 residents of the United Kingdom (UK) aged 40–69 
years were recruited at one of 22 assessment centers across the UK 
and had samples, including blood-derived DNA, collected at baseline, 
as well as baseline clinical characteristics, biomarkers, and subse-
quently incident clinical events through medical history and linkage 

our experiments using Asxl1-mutant BMDMs. We set out to mod-
el Asxl1 CH in vivo and monitor atherosclerosis. Yet, in line with 
other studies (42), we found that introducing Asxl1 mutations 
via bone marrow transplantation in mice did not confer a clonal 
advantage or lead to the development of atherosclerosis within a 
short time frame. Further research is required to establish a more 
suitable model before conclusions can be drawn.

In conclusion, in validation of the approach used, our study 
replicated murine findings in humans indicating that JAK2 CHIP 
mutation enhances CVD risk and genetically reduced Aim2 expres-
sion specifically reduced this risk. Examination across other inter-
actions of CHIP variables and predicted expression levels of inflam-
matory genes on CVD risk yielded additional findings, including 
modification of ASXL1-associated CVD risk by AIM2 expression, 

Figure 7. Asxl1 mutations and atherosclerosis. Mice receiving transplants of chimeric mixtures of bone with nontargeting guide RNAs (control) and 
Asxl1-G623* guides. (A) Terminal serum cholesterol. Complete blood cell counts at the end of WTD feeding for (B) white blood cells, (C) lymphocytes, (D) 
monocytes, and (E) neutrophils. (F) Spleen weight. %CD45.2+ mutated cells in blood (G) lymphocytes, (H) monocytes, and (I) neutrophils. (J) Representative 
images of H&E-stained aortic root lesions, and (K) quantification of lesion area and (L) necrotic core area. Data are mean ± SEM. Students t test, A–F, K, 
and L. Two-way ANOVA followed by Tukey’s post hoc test, G–I. Magnification in J is ×10.
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of the key proteins (since AIM2 and NLRP3 highly interact, we only 
kept one of them, NLRP3, as a key protein for selecting genes in the 
extended list). This resulted in a total of 29 additional genes, name-
ly CARD8, CASP1, CASP5, DHX33, IFNGR1, IFNGR2, IL10, IL18BP, 
IL18R1, IL18RAP, IL1R1, IL1R2, IL1RAP, IL6, IL6ST, IRF1, JAK1, JAK2, 
JAK3, NEK7, NLRC4, SOCS, STAT1, STAT3, STAT4, STAT5A, STAT6, 
TNF, and TYK2.

For all selected genes, we used genotyping array data from the UK 
Biobank participants to generate predicted expression scores. The details 
on quality control and imputation of genotypic data in UK Biobank have 
been described elsewhere in detail (60). Briefly, genotypic data were 
obtained using either UK BiLEVE Axiom arrays (Affymetrix Research 
Service Laboratory) or UK Biobank Axiom and then imputed to either the 
Haplotype Reference Consortium (HRC) or the merged UK10K+1000 
Genomes as reference panel. Principal component analysis (PCA) was 
performed using fastPCA (81) based on a pruned set of 147,604 single 
nucleotide variations (SNVs) among unrelated individuals (82).

We calculated the predicted expression score as weighted sums of 
expression-increase allele counts among selected SNPs, weighted by 
their raw or posterior effect sizes on the expression levels of the cor-
responding genes (β coefficient) (22, 83). Raw β coefficient estimates 
were based on summary statistics of the whole blood (85% of the Con-
sortium) and PBMCs (15% of the Consortium) cis-eQTL results from 
the eQTLGen Consortium (N = 31,684; https://www.eqtlgen.org/) 
(20), with cis being defined as within ±500,000 bp around the tran-
scriptional start site (TSS) of the encoding gene of the target protein. 
The majority of participants included in the eQTLGen Consortium 
are of European descent, which is similar to our study population (20). 
We used 2 methods to calculate the scores among EA and non-EA 
participants separately. (i) One was the pruning + thresholding (P+T) 
approach, where we used the raw effect size as weights for SNPs and 
conducted SNPs selection based on the following formula: 

    (Equation 1)

where for an individual i,  and pj are the effect size and P of vari-
ant estimated from the summary statistics, respectively; Gij is the gen-
otype dosage for that individual i and j variant; the set of Sclumping(rc

2,wc ) 
means restricting to variants remained after clumping at the squared 
correlation threshold of rc

2 and clumping window size of wc; and I(pj 
< pr ) is a binary indicator function, with 1 indicating P of variant j 
less than the specific P cutoff pr, and 0 the other way (21). For each 
gene, we created 30 candidates’ P+T-based predicted expression 
scores based on 3 r2 levels (0.1, 0.01, and 0.001), 5 P value thresholds 
(5 × 10−8, 1 × 10−5, 0.001, 0.01, and 0.1), and 2 clumping window siz-
es (within 250 kb and 5 Mb to both ends of the index SNP). (ii) The 
second method was the PRS-CS approach, which uses a continuous 
shrinkage Bayesian framework to calculate the posterior mean of 
effect sizes, used as weights, across all SNPs (22). For each gene, we 
also created 4 candidate PRS-CS–based predicted expression scores 
using 4 candidate global shrinkage parameters (1 × 10−6, 1 × 10−4, 0.01, 
and 1). For both approaches, we used a set of unrelated individuals 
from phase 3 of the 1000 Genomes Project as the linkage disequilib-
rium (LD) reference panel (84). Since eQTLGen summary statistics 
were from both whole-bold and PBMC samples, we used genotypes 

to data on hospital admissions and mortality. Details regarding this 
cohort have been described elsewhere in detail (60). Relatedness was 
defined as one individual in each pair within a third degree of related-
ness as determined based on kinship coefficients centrally calculated 
by UK Biobank (60).

Whole-exome sequencing and CHIP detection. Exomes of approx-
imately 450,000 UK Biobank participants were sequenced from 
blood-derived DNA at the Regeneron Genetics Center, as reported 
previously (62). Briefly, exomes were captured by Integrated Data 
Technologies’ (IDT’s) xGen probe library and sequenced on the Illumi-
na NovaSeq platform. Sample-specific FASTQ files were aligned to the 
GRCh38 reference. The resultant binary alignment file (BAM) contain-
ing the genomic information was evaluated for duplicate reads using 
the Picard3 MarkDuplicates tool and then converted by SAMtools to 
CRAM files that, after going through quality controls, were submitted 
to the UK Biobank data repository for distribution. CHIP detection was 
conducted through using GATK Mutect2 software (https://software.
broadinstitute.org/gatk) as previously performed (7, 63, 64). Partici-
pants were annotated as having putative CHIP if the output contained 
at least 1 of a prespecified list of putative CHIP variants in 74 genes 
anticipated to cause myeloid malignancy at a VAF greater than 2% 
(Supplemental Table 7) (3, 6, 65). Common sequencing artifacts and 
germline variants were excluded, as described elsewhere (7).

RNA-Seq data. RNA-Seq data were obtained from 2 TransOmics in 
Precision Medicine (TOPMed) cohorts: MESA and FHS.

MESA is a multiancestry prospective cohort of 6,814 self-identified 
White, Black, Hispanic, or Asian men and women free of clinical CVD 
at recruitment in 2000–2002 (66). Included in this study were 889 
individuals who had RNA-Seq data in PBMCs measured at baseline. A 
total of 889 participants were randomly selected from the MESA cohort 
for RNA-Seq in PBMCs following the standard protocol. For technical 
details for sample acquisition and RNA-Seq, see Liu et al. (67).

FHS is a multigenerational cohort initiated in 1948 (68). The 
Framingham Offspring cohort (generation 2 [Gen 2]) was recruited 
in 1971 (n = 5,124), and the Gen 3 cohort was recruited in 2002–2005  
(n = 4,095) (69, 70). The participants were predominantly self-iden-
tified White. Included in this study were 2,622 individuals from the 
Offspring and Gen 3 cohorts who had peripheral whole-blood samples 
collected and blood RNA sequenced at exams 9 and 2, respectively. For 
technical details for the blood draw and RNA-Seq, see Liu et al. (71).

Gene selection and predicted expression score generation. We exam-
ined pairs of common CHIP mutations that are associated with CVD 
risk (6), including DNMT3A, TET2, ASXL1, and JAK2, and genetical-
ly predicted expression levels of inflammatory genes that are biolog-
ically closely related to the NLRP3 or AIM2 inflammasomes; these 
genes were selected based on established biological pathways (72, 
73) and protein-protein interactions (74). Specifically, activation of 
the AIM2 and NLRP3 inflammasomes, both regulated by IFN-γ (72, 
75), leads to cleavage of IL-1β and IL-18 to produce their mature forms 
(76, 77). IL-1β and IL-18 in their active forms then exert diverse bio-
logical functions related to inflammation (78), including inducing the 
production of IL-6, a strong independent predictor of cardiovascular 
outcomes (79, 80). We therefore included genes encoding these key 
proteins, namely IFNG, AIM2, NLRP3, IL1B, IL18, and IL6R. Based 
on the protein-protein interaction networks provided by STRING 
(https://string-db.org/), we further extended our study to genes that 
encode proteins with the top 10 highest interaction scores with each 
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for 1 hour. For AIM2 inflammasome activation, BMDMs were primed 
for 1 hour with 20 ng/mL LPS (Cell Signaling Technology, 14011) 
then incubated with Lipofectamine 2000 (Thermo Fisher Scientific, 
11668019) and poly(deoxyadenylic-deoxythymidylic) acid sodium 
salt (pdAdT) (Invivogen, tlrl-patn) for 6 hours. Following incubations, 
supernatants were collected, spun down at 3,000 g for 10 minutes, 
then assessed for IL-1β protein by ELISA (R&D Systems, DY401) and 
LDH activity (Thermo Fisher Scientific, C20301).

BMDM cultures. For protein secretion assays, bone marrow was 
harvested as indicated above, and after 5 days of differentiation in L 
cell medium, BMDMs were seeded at 20,000/well in 96 well-plates 
and allowed to recover overnight. Cells were treated with vehicle 
(PBS) or LPS at a final concentration of 20 ng/mL for 6 hours. Medium 
was collected and frozen, and ELISA was conducted to determine con-
centrations of IL-6 (R&D Systems, DY406), TNF-α (R&D Systems, 
DY410), and IL-10 (R&D System, DY417).

For mRNA analysis, BMDM were differentiated for 5 days, then 
seeded into 12-well plates and allowed to recover overnight. Cells 
were treated with vehicle (PBS) or LPS at a final concentration of 20 
ng/mL for 6 hours. BMDMs were then rinsed 3 times with PBS and 
suspended in TRIzol Reagent (Thermo Fisher Scientific, 15596026), 
and RNA was isolated using an RNeasy Micro Kit (QIAGEN, 74004) 
with DNase digestion. cDNA was synthesized (Thermo Fisher Sci-
entific, 4368814), quantitative PCR (qPCR) analysis was conducted, 
and values were normalized to β-actin expression. Quantification of 
relative gene expression and percent knockdown were determined 
using the ΔΔ quantification cycle (Cq) method, derived from Cq values 
obtained through qPCR analysis. The ΔΔCq was computed in a 3-step 
process. Initially, the Cq values of the gene of interest were normal-
ized to the reference gene, β-actin, using the formula ΔCq = Cq(gene of 
interest) – Cq(β-actin). This was followed by an exponential transfor-
mation of the expression, denoted as ΔCq expression = 2–ΔCq. Finally, 
the ΔΔCq was calculated by dividing the ΔCq expression by the average 
ΔCq expression of the control group. p–γ-H2AX Western blot analysis 
was conducted on BMDMs differentiated for 5 days, plated into 6-well 
dishes, and allowed to recover overnight. BDMDs were treated with 
the indicated stimulus, including 20 ng/mL LPS, for 6 hours. Cells 
were then washed 3 times with PBS, and protein was isolated in RIPA 
buffer (Boston BioProducts, BP-115) with protease and phosphatase 
inhibitors (Thermo Fisher Scientific, 78439). Protein was quantified 
with BCA analysis and subjected to Western blotting using antibodies 
to p–γ-H2AX (Cell Signaling Technology, 9718) and β-actin (Cell Sig-
naling Technology, 12262).

Atherosclerosis studies. Bone marrow transplantations were con-
ducted as described above into lethally irradiated Ldlr–/– mice. After 4 
weeks of recovery, mice were subjected to WTD feeding for 12 weeks. 
Blood cell counts were quantified from cheek bleeding using a VetScan 
HM5 Hematology system (Abaxis). For Asxl1 burden analysis, red blood 
cells were lysed using RBC lysis buffer (BioLegend, 420301), washed in 
PBS with 1% BSA and 2 mM EDTA, stained with the indicated antibod-
ies (CD3, CD115, Ly6G, CD45.1, and CD45.2), and then analyzed using 
a LSR-Fortessa. After 12 weeks of WTD feeding, mice were euthanized 
and perfused with PBS, and aortic roots were fixed in 4% parafor-
maldehyde for 48 hours. Aortic roots were embedded in paraffin and 
sectioned 6 μm thick. H&E staining was conducted on 6 slides 60 μm 
apart and imaged on a Nikon Labophot 2 and Image Pro Plus software 
(Media Cybernetics, version 7.0.0.591). Researchers blinded to the 

and transcriptome concentrations from both FHS (whole blood) and 
MESA (PBMCs) for score tuning (67). For each gene, we selected the 
optimal method and parameters for generating the score based on the 
largest r2 of the measured transcriptome levels in either FHS or MESA, 
since the eQTL source data were from either whole blood or PBMCs. 
The best-predicted expression scores were all standardized to zero-
mean and unit variance and were approximately normally distributed 
in the population. In the current study, we continued studying genes 
whose final-selected best-performed predicted expression scores had 
r2 > 1% among EA participants, resulting in suitable scores for 26 genes 
(Figure 2 and Supplemental Table 2).

Study outcomes. The primary outcome, CVD event, was a compos-
ite of myocardial infarction, coronary artery revascularization, stroke, 
or death as before (7). We also secondarily used CAD for sensitivity 
analysis, which was defined as myocardial infarction, percutaneous 
transluminal coronary angioplasty or coronary artery bypass grafting, 
chronic ischemic heart disease, and angina. Both disease outcomes 
were defined by a combination of inpatient hospital billing Interna-
tional Classification of Diseases (ICD) codes and UK death registries, 
listed in Supplemental Table 8 (7). The exploratory outcomes included 
31 hematopoietic cell count indexes and 5 cardiometabolic biomarkers 
(C-reactive protein [CRP], total cholesterol, HDL cholesterol, LDL cho-
lesterol, and triglycerides). These conventionally measured biomarkers 
were analyzed as quantitative traits and were log2-transformed (with 1 
added across all measurements to avoid 0 values for CRP), standard-
ized to zero-mean and unit variance, and normalized in the population. 
Blood samples of UK Biobank participants were collected into 4 mL 
EDTA Vacutainers by vacuum draw, stored at 4°C, and then transport-
ed to the UK Biocentre in temperature-controlled shipping boxes (85). 
Full blood counts were measured among all participants using clinical 
hematology analyzers at the centralized processing laboratory. Serum 
CRP level was measured by immunoturbidimetric high-sensitivity 
analysis on a Beckman Coulter AU5800. Lipid measurements were 
performed on the Beckman Coulter AU5800 platform and run using 
an immunoturbidimetric approach.

Asxl1-chimeric mice. Bone marrow from CD45.2+ Cas9 transgenic 
mice (The Jackson Laboratory, 026179) was harvested and enriched 
for c-Kit+ cells using magnetic beads (Miltenyi Biotec, 130-091-224). 
LT-HSCs (Lin–c-Kit+Sca1+CD48–CD150+) (86) were then harvested by 
flow cytometric sorting. LT-HSCs were then spinfected with 6 μg/mL  
Polybrene (MilliporeSigma, TR-1003-G) and lentiviruses contain-
ing nontargeting guides (Nmt4) or guides targeted to Asxl1 in exon 12 
(Asxl1-G623*). LT-HSCs were washed and then incubated for 3 days. 
LT-HSCs were then mixed with 1 × 106 supporting cells from CD45.1+ 
WT mice and transplanted into irradiated Ldlr–/– recipient mice.

Asxl1-CRISPR validation. CRISPR guides targeted to exon 12 of 
Asxl1 were designed by CHOPCHOP (87) and screened in skin-derived 
fibroblasts from Cas9 transgenic mice. Guide sequence AGTGGTA-
ACCTCTCGCCCCTCGG was evaluated by Sanger sequencing of PCR 
amplification of flanking regions using forward GCAGCATAAAATG-
GCTCTTGAT and reverse GCTGAGTCTTCTCTTCTGGCTC primers.

Inflammasome activation studies. Five weeks after transplantation, 
bone marrow was harvested and cultured in L cell medium for 5 days 
to generate BMDMs. 20,000 BMDMs/well were seeded into 96-well 
plates and allowed to recover overnight. BMDMs were then primed 
with 20 ng/mL LPS (Cell Signaling Technology, 14011) for 3 hours and 
stimulated with the indicated concentrations of ATP (MilliporeSigma) 
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experimental protocol quantified lesion area and necrotic core area in 
Fiji software (88), and reported the average for the 6 slides.

Statistics. We evaluated the association between CHIP mutations 
and incident CVD, as well as the modification effects, by predict-
ed expression levels of inflammatory genes measured as predicted 
expression scores. Using Cox’s proportional-hazard models, we first 
estimated the HRs and associated 95% CIs of (i) the presence of CHIP 
mutations and (ii) the presence of large clones, defined as having a 
VAF > 10%, of CHIP mutations for incident CVD events. Then we 
conducted stratified analyses evaluating the associations between 
the predicted expression scores of selected inflammatory genes on 
the incidence of the primary outcome (i.e., CVD) with or without the 
presence of CHIP variables. We carried forward predicted expres-
sion scores that were associated with incident CVD risk (defined as 
P < 0.05) only in the presence of CHIP variables(s) to evaluate the 
effect of the interactions between those scores and the corresponding 
CHIP variables on the primary outcome. We considered time at risk 
as starting at enrollment in the study and continuing until the event 
of interest, death, loss to follow-up, or the end of follow-up. Models 
were adjusted for age at the time of enrollment, sex, self-reported 
White British ancestry, BMI, diagnoses of type 2 diabetes mellitus at 
the time of enrollment, ever-smoker status, and the first 10 principal 
components of genetic ancestry (60). Since only less than 2% of the 
study population had missingness for any of the adjusted covariates, 
we removed those individuals from our regression models.

For significant interactions (FDR < 0.05) discovered in the above 
analysis, we evaluated their associations across 31 hematological and 5 
cardiometabolic traits using the same Cox proportional-hazard models 
with adjustment for the same sets of covariates. All hematological and 
lipid traits were log2-transformed, standardized to zero-mean and unit 
variance, and were approximately normally distributed in the popula-
tion. Analyses used R version 4.0.0 software (The R Foundation), 2-tailed 
P values, as well a statistical significance level of 0.05 for other analyses.

Study approval. The secondary use of data for the present analy-
sis was approved by the Massachusetts General Hospital Institutional 
Review Board (protocol 2021P002228) and facilitated through UK 
Biobank Application 7089. All animal experiments were conducted 
with approval from the Institutional Animal Care and Use Committee 
of Columbia University (New York, New York, USA).

Data availability. TOPMed individual-level DNA and proteomics 
data used in this analysis are available with restricted access via the 
Database of Genotypes and Phenotypes (dbGaP; https://www.ncbi.
nlm.nih.gov/gap/). UK Biobank individual-level data are available 
with request by application (https://www.ukbiobank.ac.uk). Raw data 
for mouse experiments are reported in the Supporting Data Values 
file. All code used for the described analyses are available at https://
github.com/zhiyu7/chipmodifier (commit ID: 8e634e2).
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